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Abstract
We theoretically analyse the defect modes generated by equispaced twist defects
in 1D helical (cholesteric-like) structures within their frequency gap which is
such that only the first two of the four eigenwaves 1±, 2± are exponentially
attenuated. n0 identical defects generate n0 different defect modes, each one
represented by a linear combination of the four eigenwaves. The components
1+ and 1− are by far the dominant ones and they are localized near the defect
planes. We give exact analytic expressions for the elements of the transfer and
scattering matrices of the defect planes, for the functions defining the defect
mode when n0 = 1, and for the defect frequencies when n0 = 1, 2, 3. In the
particular case n0 = 2 and twist angle θ = π/2, the difference between the two
defect wavelengths λd2, λd1 depends exponentially on the distance z1 between
the defect planes, going to zero for z1 → ∞ and becoming as large as the
entire frequency gap for z1 → 0.

PACS numbers: 42.70.Qs, 42.70.Df

1. Introduction

One or more defects in a periodic structure may give rise to resonant modes inside the photonic
band gaps, namely to standing waves with a huge energy density localized in the proximity of
the defects (defect modes). A conventional 1D structure with only one defect can be considered
as a Fabry–Perot interferometer in which the reflecting layers at the two sides of the cavity are
constituted by 1D crystals whose thickness is comparable with the attenuation length of the
standing waves within the gap, which are exponentially attenuated. The cavity acts here as a
defect in the periodic structure. Very interesting optical properties are obtained by considering
(1) anisotropic periodic structures, which display two different sets of band gaps for light with
different polarization states, and (2) samples with more than one defect.

In this paper, we theoretically consider light propagation along the helix axis of samples
in which the periodic structures are helical (cholesteric-like) crystals and the thickness of the
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cavities goes to zero. Any defect reduces therefore to a simple discontinuity plane within
the periodic structure. Such samples can be obtained as follows: (1) we consider first an
helical sample without defects between planes orthogonal to the helix axis; (2) then we cut
the sample in such a way to obtain two or more layers between parallel planes; and (3)
we finally rotate any layer with respect to the preceding one around their common helix
axis by a given angle (twist angle). Samples with only one twist defect in the middle have
received a great deal of attention in recent years because of their interesting optical [1–8] and
acoustical [9–11] properties and for applications [12–14]. Helical media without defects are
unique periodic structures of great practical interest whose optical properties can be defined
by equations which, for light propagating along the helix axis (parallel propagation), are at the
same time exact and very simple. The four eigenwaves are obviously Bloch waves, but with a
suitable choice of reference frame they can be written in the simple form of plane waves with
constant wavevectors. Such vectors satisfy the same dispersion relation valid for homogeneous
anisotropic media, that is, a biquadratic equation. As far as we know, nothing similar is found
for any other periodic medium. In fact, the Bloch waves are the superposition of an infinite
number of plane waves even in the simple case of periodically spaced isotropic layers [15].
Since the defect modes in periodic media with defects are the superposition of Bloch waves
their description requires, in general, the use of complicated equations or computations, with
the only exceptions of helical structures with twist defects. This fact is in itself a good reason
for their study, in our opinion. Some interesting results have already been found recently for
samples with only one twist defect [2, 3, 6, 7]. This paper can be considered as a continuation
of the already published ones, with the extension to samples with any number of twist defects.
The considered cholesteric-like structure is, at the same time, dielectric and magnetic. At the
optical frequencies, the relative permeability of any medium is practically equal to one, but our
results are valid for any frequency. The addition of a permeability tensor µ to the permittivity
tensor ε gives equations which are both more general and simple, at least in the sense that they
are more symmetric. Further, a suitable choice of the permittivity and permeability tensors
greatly simplifies the equations.

In section 2, we define the optical properties of the helical structure without defects which
are strictly required for the analysis of the twist defects. Most such properties are already
known and have been described in innumerable papers and textbooks. In particular, exact
analytic solutions for parallel propagation in cholesteric liquid crystals have been known since
1971 [16]. The central part of this section concerns the properties of the standing waves within
the band gap (section 2.3). In section 3, we discuss the optical properties of samples with
only one twist defect, giving for the first time exact equations for the defect mode and for the
transfer and scattering matrices of the defect plane. Samples with two or more twist defects
are discussed in sections 4 and 5, respectively. Finally, in section 6 we give our final comments
and concluding remarks.

2. Optical properties of the helical structure

We consider a dielectric and magnetic medium in which the tensors defining the local
permittivity εε0 and permeability µµ0 rotate uniformly along a given axis, say x3, with
their principal axes making constant angles with x3 (helically 1D-periodic medium).

2.1. The propagation equation and its solutions

For parallel propagation the Maxwell equations can be written as
dβ

dz
= iHβ, (1)
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where

z = ω

c
x3, (2)

β =


e1

e2

h1

h2

 = R(−qz)


Z

−1/2
0 E1

Z
−1/2
0 E2

Z
1/2
0 H1

Z
1/2
0 H2

 H =


0 −ĩλ 0 µ2

ĩλ 0 −µ1 0
0 −ε2 0 −ĩλ
ε1 0 ĩλ 0

 , (3)

and where Z0 = √
µ0/ε0; Ei,Hi, (i = 1, 2) are the transversal components of the field vectors

E, H;R(ϕ) is the rotation matrix defined as

R(ϕ) = exp(Rϕ) ≡ cos ϕ1I + sin ϕR, R =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ; (4)

1I is the 4 × 4 identity matrix,

λ̃ = λ/p, (5)

p = 2π/q is the helix pitch and λ the wavelength in free space. The helix is right- and left-
handed for positive and negative values, respectively, of p and λ̃. In the following, we consider
the right-handed helices. The quantities ei, hi can be considered as normalized components of
the field vectors E, H in a Cartesian frame (x1, x2, x3) whose axes x1 and x2 are rotating solidly
with the tensors ε, µ. In the rotating frame, these tensors are therefore independent of x3 and
z. The parameters εi, µi depend on the principal values of ε, µ and on the angles between
their principal axes and the Cartesian axes. The simple form (4) of H is obtained by suitably
choosing the rotating axes x1 and x2. The structure considered here includes, as particular
cases, the chiral smectic-C (S∗

C) and cholesteric (N*) liquid crystals. In such crystals µ = 1,
one of the principal axes of ε is orthogonal to x3, another one makes a constant tilt angle with
x3 for S∗

C and is orthogonal to x3 for N*. In the last case, x1, x2 and x3 are the principal axes
and ε1, ε2 and ε3 are the principal values of ε. In the other cases, we must diagonalize the
projection of the tensors ε and µ on the plane orthogonal to x3 in order to define xk, εk, µk

(k = 1, 2). The evaluation of such quantities is standard.
Since the system matrix H is z-independent, the propagation equation (1) admits four

solutions having the form of plane waves

βj (z) = t j exp(injz), (6)

where the time factor exp(−iωt) is omitted and where nj , tj are the eigenvalues and
eigenvectors of H, respectively. They are given by the equations:

n2
1,2 = ε1µ2 + ε2µ1

2
+ λ̃2 ∓ u (7)

t±1 = c1(±n1u1, ĩλ(2ε1µm − u2),∓2in1λ̃εm, 2̃λ2εm + u1ε1)
(8)

t±2 = c2(±n2u2, ĩλ(2ε1µm − u1),∓2in2λ̃εm, 2̃λ2εm + u2ε1),

where

u =
√

4εmµmλ̃2 + a2
c , u1,2 = ac ∓ u,

ck = |4nku(ukε1 + 2̃λ2εm)|−1/2, (k = 1, 2)

ac = ε1µ2 − ε2µ1

2
, εm = ε1 + ε2

2
, µm = µ1 + µ2

2
.

(9)
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2.2. Amplitude representation and metric of the state space

The internal field can be represented as a superposition of the four eigenwaves (amplitude
representation), by setting

β(z) = aj t
j exp(injz) ≡ T α(z) (10)

where T is the matrix whose j th column coincides with t j and α(z) is the 4-vector with
components aj exp(injz). Obviously, α and β = T α represent the same state in two different
sets of basis vectors. The metric of the state space is obtained by defining a metric tensor
G and a scalar product β

†
1Gββ2 ≡ α

†
1Gαα2, where Gβ and Gα = T †GβT are the matrices

representing G in the two sets of basis vectors. Setting

Gβ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 (11)

the norm of the state vector represents the time average of the z-component of the Poynting
vector, and the tensor G satisfies the relations

G ≡ G† ≡ G−1. (12)

In lossless media, the z-derivative of the norm is identically zero and the matrix GβH is
self-adjoint:

GβH = (GβH)† ≡ H †Gβ. (13)

The above property and the fact that the eigenvalue equation for H is biquadratic imply that
the eigenvalues are n1, n2, n3 = −n1, n4 = −n2, with nj real or purely imaginary.

2.3. Properties of the standing waves within the band gap

The helical structure considered here admits only one band gap, where n1 is imaginary and n2

real. At the band edges 1 and 2, the eigenvalue n1 is equal to zero, the reduced wavelengths
λ̃k (k = 1, 2) are given by

√
εkµk , and the corresponding eigenvectors 1± define linearly

polarized standing waves whose amplitudes exponentially decrease in the forward direction3.
Interestingly, the field vectors e and h are parallel and oscillate along the axis xk with a phase
difference 
ϕ = ±π/2. In fact equation (8) gives eigenwaves 1± with h± real and e± purely
imaginary. In the particular case ac = 0 the vector e+ is parallel to h+ and e− to h− for any λ̃

within the gap. The angles between such vectors and the axis x2 are ±φ, where

λ̃ = λ̃m + λ̃a cos 2φ, (14)

with

λ̃m = λ̃1 + λ̃2

2
, λ̃a = λ̃2 − λ̃1

2
. (15)

Therefore, the field vectors of the eigenwaves 1+ and 1− rotate by π/2 in opposite senses
when λ̃ increases from λ̃1 to λ̃2 (without loss of generality we assume λ̃1 < λ̃2). The sense
of their rotation satisfies the right-hand rule with respect to the forward direction of the two
eigenwaves.

3 Here ‘forward’ does not refer to the direction of the energy flow since the Poynting vector is zero. The waves
1+ and 1− must be considered forward and backward respectively, even though they are standing, because a wave
incident on a discontinuity plane from the left (a ‘forward’ wave) generates 1+ in transmission and 1− in reflection.
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In the general case, ac �= 0 the vectors e and h are no more parallel during the rotation
but their bisector φ ≡ (φe + φh)/2 makes angles with x2 which are still approximately given
by equation (14). The angle ψ between e and h plays a main role for the optical properties of
the defect modes. Its dependence on ac and λ̃ is discussed in [2].

We finally observe that within the gap the polarization of the propagating eigenwaves 2±

is nearly circular.

2.4. Metric matrices

In the α-representation, the basis vectors will be chosen in the order 1+, 2+, 1− and 2−. Using
this choice the matrix Gα is given by

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 and


0 0 −i 0
0 1 0 0
i 0 0 0
0 0 0 −1

 , (16)

in the regions outside and within the band gap, respectively. These matrices summarize the
most important properties of the scalar product between the eigenvectors of H. One may note
that the norm of the standing waves 1± within the gap is equal to zero. Another way to define
the scalar product consists in assuming as Gβ the diagonal matrix with diagonal elements
ε1, ε2, µ1 and µ2. With such definition, the norm of the state vector represents the time
average of the energy density4 multiplied by the velocity of light in free space. It is therefore
positive definite, but the simple form of equations (16) is lost since the matrix Gα is no longer
sparse.

3. Singlets

We consider now a helical sample between the planes z = − and z = + with only one
twist defect at z = 0, which divides the sample in two regions referred as a for z < 0 and b
for z > 0. The main properties of the defect mode have already been found numerically in
[2, 6, 7, 12]. We approach here the problem quantitatively by means of exact equations.

3.1. Thick Samples

Let us first consider an unbounded structure, i.e., the limit l → ∞. Any solution of Maxwell’s
equations can be written as

β(z) = βa(z)�(z) + βb(z)�(−z), (17)

where �(z) is the Heaviside step function and βk(z) (k = a, b) is a linear combination of the
eigenwaves t

j

k exp(injz). The eigenvectors t
j
a and t

j

b are given by equation (8) in two different
frames a and b whose axes x2a, x2b make an angle θ (see figure 1 in section 3.2). In a frame
having as axis x2 the bisector of x2a, x2b, such vectors are obtained by applying the rotation
matrices R(−θ/2) and R(θ/2) to the vectors t j defined by equation (8). The corresponding
matrices Ta and Tb are therefore given by

Ta = R(−φ)T , Tb = R(φ)T , (18)

where φ = θ/2.

4 We neglect here dispersion. For the definition of the energy density in dispersive media see, e.g., [17].
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In the limit  → ∞ the exponential factors of the first component of αa = T −1
a βa and

of the third component of αb = T −1
b βb (corresponding to the eigenwaves 1+ in the region a

and 1− in the region b) diverge for z going to −∞ and +∞, respectively. Their amplitude
must therefore be zero. The tangential continuity of the vectors E and H at z = 0 give four
homogeneous equations for the other six components. Without loss of generality, we can set
to 1 the amplitude of the eigenwave 1− at z = 0−. The amplitudes of the eigenwaves 2± at
z = 0− and z = 0+ can easily be expressed as a function of the amplitude s of the eigenwave
1+ at z = 0+, and the most general internal field can be written as a linear combination of
the solutions corresponding to s = ±1. For each one of such values, the amplitude vectors
αa(s) and αb(s) have components (0, A+(s), 1, A−(s)) and (s, B+(s), 0, B−(s)), respectively,
where

A±(s) = a′(s) ± ia′′(s), B±
b (s) = sA∓

a (s), (19)

with

a′(s) = − c2

acc1

2̃λ2εm + ε1u1

2̃λ2εm + ε1u2

[
in1λ̃uεm(cot φ)ss

2̃λ2εm + ε1u1
+

u2

2

]
(20)

a′′(s) = c2

acc1

2̃λ2εm + ε1u1

4̃λεmn2

[
u(tan φ)ss − 2in1λ̃εmu1

2̃λ2εm + ε1u1

]
.

At each side of the defect plane the amplitudes A± and B± have the same modulus
m =

√
a′2 + a′′2. Therefore, their superposition is a standing wave. It is linearly polarized

and nonlocalized, whereas the eigenwaves 1± define a localized standing wave in which the
amplitude of the field vectors depends on z as exp(−|z|/d), where

d = 1/|n1| (21)

is the attenuation length.
For s = 1 the ratio ρ(̃λ) = 1/2m2 between the square amplitudes of the localized and

nonlocalized components at the defect plane depends strongly on λ̃ and reaches an enhanced
maximum at a well-defined value λ̃d of λ̃. It defines therefore a quasilocalized defect mode
having the structure of a singlet in which the localized components 1− and 1+ are dominant.
The fact that the defect mode in helical media with a twist defect is not a localized mode in the
strict sense, since it also contains a small nonlocalized component, was shown first in [10] for
the acoustic waves and extended to the electromagnetic waves in [2, 7, 12]. Some doubts are
expressed in [8] about the existence of a nonlocalized component because there is no evidence
of this component in region b when the defect mode is excited by waves incident from the left
on thick samples. The absence of such component will be explained in the next section. Here
we add some comments concerning the use of the found solutions.

(i) It is always possible to find a linear combination of the two solutions in which the
eigenwave 2− is absent in b and 2+ has unit amplitude in a (at z = 0−). Since this
last eigenwave is the only one incident on the defect plane, the amplitudes of the other
four eigenwaves coincide with four of the 16 elements of the scattering matrix S of the
defect plane. In section 3.2, the defect frequency will be defined using this property. In
section 3.3, the scattering matrix will be defined with a different approach.

(ii) The solutions found here define two of the four eigenmodes for the electromagnetic field
in finite samples. The other two can be found by considering also the eigenwaves which
have been neglected (1+ in a and 1− in b). In thick samples (with l 	 ld), we can chose
such eigenwaves as independent eigenmodes. They are different from zero only near
the boundaries of the sample (boundary eigenmodes). In thin samples, such eigenwaves
are not eigenmodes since it is impossible to satisfy the continuity equations at the defect
plane without considering also the other eigenwaves.
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(a)

(b)

Figure 1. Rotation of the vectors (e+, h+) and (e−, h−) of the eigenwaves 1+ and 1− for ac = 0
(a) and ac �= 0 (b). The vectors (e−, h−) are along x2a and (e+, h+) along x2b for λ̃ = λ̃2. By
decreasing λ̃ they rotate towards x2 keeping their parallelism only when ac = 0. For λ̃ = λ̃d the
vectors (e−, h−) coincide with (e+, h+) and along x2 in (a). In (b) such vectors never coincide but
for λ̃ = λ̃d their bisectors become parallel to x2. We recall that the angle between x2a and x2b is
the twist angle θ .

(iii) The internal field generated by external waves is the superposition of the four eigenmodes,
which in thick samples have the simple structure defined in (ii).

3.2. Wavelength λ̃d of the defect mode

In [6], the author shows that the defect wavelength λ̃d is approximately given by the equation:

λ̃d = λ̃m + λ̃a cos θ. (22)

We show here that this equation is exact when ac = 0. In this particular case, it is possible
to satisfy the continuity relations for e and h by considering only the eigenwave 1− in a and
1+ in b. The possibility of satisfying four relations with only two free parameters is due to the
fact that the continuity of e implies the continuity of h (we recall that such vectors are parallel
when ac = 0). Figure 1(a) shows that e+ and e− coincide when they are parallel to the axis x2,
which is the bisector of the twist angle θ . This occurs at a well-defined value λ̃c of λ̃, which
is related to the angle φ = θ/2 by equation (14). Therefore, equation (22) defines the exact
value of the defect frequency. In conclusion, the defect mode is localized in the strict sense
and its frequency is perfectly defined when ac = 0.

Figure 1(b) illustrates the fact that for ac �= 0 the vectors e and h are no more parallel
during their rotation. It corresponds to s = 1 (for s = −1 the vectors e−, h− are unchanged
whereas e+, h+ have the opposite directions). Obviously, no value of λ̃ exists for which e+

coincide with e− and h+ with h−. The solution found in section 3.1 is obtained by adding to
the eigenwaves 1± a linear combination of the eigenwaves 2±, which is such that the resulting
vectors e and h are again parallel, along x2, and dephased by ±π/2 (for s = −1 they are
parallel to x1). The figure suggests also that the minimum value of the coefficients A± and
B± is obtained when the bisectors of the vectors (e+, h+) and (e−, h−) (dotted lines) coincide
with x2, thus giving a maximum for the function ρ(̃λ). Approximate values for λ̃d and for
ρ(̃λ) have been obtained in [2] on the basis of similar arguments.
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Figure 2. Difference 
λ̃ between the exact values of λ̃d and the approximate ones (given by
equation (22)) versus the twist angle θ in (a) and versus the anisotropy parameter ac in (b).
In (a) the full, dashed and dash-dotted lines correspond to ε2 = 2.5, 3, 3.5, respectively, for
ε1 = 2, µ1 = µ2 = 1. In (b) they correspond to θ = π/4, 2π/4, 3π/4, with λ̃1 ≡ √

ε1µ1 =
1.7, λ̃2 ≡ √

ε2µ2 = 2.3, and Zm = 0.67, where Zm ≡ 1/2(
√

µ2/ε2 − √
µ1/ε1). The physical

meaning of the parameter Zm is discussed in the appendix.

We define here the exact value of λ̃d for ac �= 0 by considering an interesting property
of the twist defects first found numerically by Kopp and Genack [3], namely the fact that for
λ = λ̃d the defect plane totally reflects the eigenwaves 2±. For this purpose it is enough to
consider the solution defined at point (i) of 3.1, corresponding to a field in which the eigenwave
1− is absent in b, and search for the value λ̃d of λ̃ which makes equal to zero the amplitude
of the eigenwave 1+ in b. Straightforward calculations give the following relation between θ

and λ̃d,

θ = cot−1

[
i

2

(
u2

(
u1ε1 + 2εmλ̃2

d

)
4n1uεmλ̃d

− 2n1u1εmλ̃d

u
(
u1ε1 + 2εmλ̃2

d

))]
+ mπ, (23)

where m is any integer, since θ is defined modulus π . We have found numerically that this
equation is completely equivalent to the equation given in [2]5 for λ̃d and that the approximation
given by equation (22) is in any case quite good, as shown in figure 2.

3.3. Thin samples

When the thickness 2l of the sample is comparable with the attenuation length ld of the modes
1±, all the eigenwaves can reach the defect plane. Thus, it is impossible to define all the
elements of the scattering matrix using the solutions given by equations (19) and (20) where
only three of the four eigenwaves are considered. According to the standard procedure [18],
we consider first the transfer matrix (or propagator) U, which is, implicitly defined by the

5 But in [2], the twist angle is defined by considering the opposite rotation, so that it has the opposite value.
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equation αb(0+) = Uαa(0−). Taking into account equation (18), the relation β = T α, and the
continuity of β(z) at the defect site z = 0, one obtains

U = U(0+, 0−) = T −1 exp(−Rθ)T ≡ cos θ1I − sin θRS, (24)

where

RS = T −1RT .

The matrix RS is similar to the matrix R defined in equation (4). Therefore: R−1
S = −RS and

their determinant is equal to 1. To find the elements of RS we express T −1 as a function of
T using the relation Gα = T †GβT of section 2.2 and the equations defining the elements of
T ,Gα and Gβ . Straightforward calculations give

RS =


−r1 −r∗

5 −r3 −r5

ir∗
5 ir2 ir5 ir4

r3 r5 r1 r∗
5

−ir5 −ir4 −ir∗
5 −ir2

 (25)

where the quantities rj (j = 1, . . . , 5) are

r1,3 = 2̃λc2
1

[
(2̃λ2εm + u1ε1)(u2 − 2ε1µm) ∓ 2n2

1u1εm

]
,

r2,4 = 2̃λc2
2

[
(2̃λ2εm + u2ε1)(u1 − 2ε1µm) ∓ 2n2

2u2εm

]
, (26)

r5 = 4̃λc1c2ac(ε1(ac − ε1µm) + εm(̃λ2 + n1n2)),

and satisfy the relation r2
3 + r2

4 = r2
1 + r2

2 .

The derivation of the scattering matrix from U is standard [18]. It is convenient to write
the 4 × 4 matrix U as

U =
(

Uff Ufb

Ubf Ubb

)
, (27)

where f and b stand for forward and backward, respectively, and to consider also the matrix
U−1 ≡ cos θ1I + sin θRS . The 2 × 2 matrix Sff is the inverse of (U−1)ff , that is given by

(U−1)ff =
(

cos θ − r1 sin θ −r∗
5

ir∗
5 cos θ + ir2 sin θ

)
. (28)

As already stated, for λ̃ = λ̃d the eigenwave 2+ is totally reflected at the defect plane.
This means that the element (2, 2) of S, which coincides with the element (2, 2) of Sff, is
equal to zero. It is easy to show that this element is zero when the element (1, 1) of its inverse
matrix (U−1)ff , given by equation (28), is zero (see section 6.2). Therefore, the quantity λ̃d is
implicitly defined by the equation

θ = cot−1[r1(̃λd)] + mπ, (29)

which is fully equivalent to equation (23).
The reflectance and transmittance of the sample are defined by the scattering matrix of

the whole sample. Its computation is again standard [18]. The curves giving the dependence
on λ of these quantities for different values of l, θ, ac and for the different polarization states
have already been found numerically in [2, 3, 6] and will not be reported here. We remark
only that such curves display enhanced maxima or minima for λ̃ ≈ λ̃d, whose spectral width

ω is equal to τ−1, where τ is the decay time of defect mode. When l 	 ld, where ld is
the attenuation length of the eigenwaves 1±, τ is practically independent of l but depends
drastically on ac, since the energy stored by the defect mode can only escape because of the
presence of the nonlocalized component. For ac = 0 such component disappears, τ goes to
infinite and 
ω goes to zero. We finally mention that dissipation in lossy media has dramatic
effects on 
ω and gives rise to paradoxical effects [2, 10].
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4. Doublets

We consider now an unbounded helical medium with two identical twist defects at z = 0 and
z = z1. The transfer matrix relating the α-vectors at z = 0− and z = z+

1 is given by

U = U
(
z+

1 , 0−) = U1 exp(iNz1) U1 (30)

where U1 is the transfer matrix for each one of the defect planes, given by equation (24), and
N is the diagonal matrix with diagonal elements equal to nj . The matrix exp(iNz1) is the
transfer matrix U(z−

1 , 0+) of the layer between the two twist defects.

4.1. Scattering properties of the layer with two twist defects

The scattering matrix S = S
(
z+

1 , 0−)
can be written as

S = (P1 − UP2)
−1(UP1 − P2). (31)

where P1 and P2 are the diagonal matrices defined as
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 and


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

respectively (P1α and P2α represent therefore the forward and backward components of
α, respectively). The element (i, j) of S correspond to waves incident from the left when
j = (1, 2) and give the transmission and reflection properties of the layer when i = (1, 2)

and i = (3, 4), respectively (we recall that the vector α defines the amplitude of the four
eigenwaves in the order 1+, 2+, 1−, 2−). The square amplitudes of such elements give the
transmittance and reflectance of the layer for waves incident from the left. The curves giving
such quantities versus λ̃ are quite similar to the corresponding curves found in [2, 3, 6]
for a single twist defect, except for the fact that they have the structure of a doublet with
two defect frequencies λ̃d1, λ̃d2. The curves (1, 1) and (2, 2) giving the transmittance for
the eigenmodes 1 and 2, respectively, are plotted in figure 3. For λ̃ = λ̃d1 and λ̃ = λ̃d2 the
eigenwave 1 generates at the other side of the layer an eigenwave 1 with a huge amplitude,
whereas the eigenwave 2 is totally reflected since the transmitted curve is completely absent.
We recall that a single twist defect reflects totally the eigenwave 2 only for λ̃ = λ̃d, where λ̃d

is between λ̃d1 and λ̃d2. The presence of the other defect drastically changes this reflection
property.

The behaviours of the other curves, not plotted here, can be summarized as follows. They
display enhanced peaks with the same spectral width as the curves plotted in figure 3. The
peak value of the curve (3, 1) is nearly equal to the peak value of the curve (1, 1). This
mean that the eigenmode 1 generates huge eigenmodes 1 also in reflection. The mixed curves,
giving the square amplitudes of the eigenwaves 1 generated by the eigenwave 2 and vice versa,
show peaks whose peak values are smaller (they are roughly equal to the square root of the
(1, 1) peak). The fact that a single wave with unit amplitude incident on the layer can generate
reflected and transmitted waves with huge amplitude could be surprising, but the energy is in
any case conserved.

4.2. Defect frequencies

The defect frequencies λ̃d1, λ̃d2 can be found using the same procedure of section 3.3. Figure 3
shows that at the defect frequencies the element (2, 2) of the matrix S is equal to zero, a fact
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Figure 3. Transmittance of the layer including two identical twist defects versus the reduced
wavelength λ̃/̃λm for the eigenwaves 1 (upper curve) and 2 (lower curve) for ε1 = 3, ε2 = 3.6,

µ1 = µ2 = 1, θ = π/2, z1 = 3ld. At the defect frequencies the eigenwave 1+ generates an
eigenwave 1+ with a huge amplitude at the other side of the layer, whereas the eigenwave 2+ is
totally reflected, since the transmittance is zero.

which implies that the element (1, 1) of the matrix U−1 is zero. Setting to zero, one obtains
this element easily,

cot θ = r1 ± exp(−z1/(2ld))
(
r2

3 exp(−z1/ld) + 2 Im
(
r2

5 exp(in2z1)
))1/2

, (32)

which is satisfied by two different values λ̃d1, λ̃d2 of λ̃ for any value of θ (note that the
quantities ld ≡ 1/|n1|, r3, r5 and n2 are the functions of λ̃). The terms containing the common
factor exp(−z1/(2ld)) act here as perturbing terms. For z1 	 ld such terms vanish and
equation (32) becomes identical to equation (29), which gives the frequency λ̃d of the singlet.
In other words, when the two twist defects are very much separated, they act independently
with each other and the two defect modes becomes degenerated, since λ̃d1 = λ̃d2 = λ̃d. We
recall that ld is the attenuation length of the eigenwaves 1±, which constitute the dominant
components of the defect modes and are localized near the defect planes. When z1 	 ld, the
component peaked at z = 0 does not reach the defect plane z = z1, and vice versa. This
fact suggests that the ‘interaction’ between the two defects is mainly due to the localized
components of the defect modes, which in equation (32) is represented by the first one of the
two perturbing terms. Neglecting the other term, equation (32) assumes the simple form,

cot θ = r1 ± r3 exp(−z1/ld), (33)

which gives the defect frequencies with a good approximation (within 0.1% for reasonable
values of the material parameters).

For ac = 0 the continuity conditions of the vectors e and h at the two defect planes can be
satisfied by considering only the eigenmodes 1±, for the same reasons discussed in section 3.2
(see figure 4). The defect modes contain only the eigenwave 1− for z < 0 (region a), both
eigenwaves 1+ and 1− in region b (0 < 0 < z1), and the eigenwave 1+ in region c (z > z1).
Only the vectors e are considered in figure 4 because for ac = 0 the continuity of e implies the
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Figure 4. Rotation of the vectors e at the two sides a, b of the twist plane z = 0. For ac = 0 the
continuity conditions for the vectors e, h can be satisfied by considering only the modes 1±. For
λ̃ = λ̃2 (upper figure), the vectors e−

a and e+
b are parallel to x2a and x2b, but in the region b we have

also a vector e−
b , due to the presence of the other twist defect. The defect wavelengths λ̃d1, λ̃d2 of

the two twist modes correspond to e−
b parallel and antiparallel, respectively, to e+

b . We consider
here the second case. The lower figure shows how the boundary condition e+

b + e−
b = e−

a can be
satisfied and suggest that this occurs after a rotation φ < θ/2. This implies that λ̃d2 is intermediate
between λ̃2 and de defect frequency λ̃d of samples with only one twist defect, since λ̃ = λ̃d when
φ = θ/2.

continuity of h, which is parallel to e. The figure clearly explains the presence of two different
defect modes and suggests that the quantities λ̃2, λ̃d2, λ̃d, λ̃d1, and λ̃1 are in decreasing order
(thus, the corresponding frequencies are in increasing order).

The curves giving the square amplitudes of the elements of the scattering matrix S
(
z+

1 , 0−)
versus λ̃ are strongly asymmetric. They could be quite symmetric only in the particularly
interesting case θ = π/2. This is shown in figure 5, which gives the (1, 1) transmittance
for different values of the distance z1 between the defect planes. The separation λ̃d2 − λ̃d1

between the peaks decreases by increasing z1. We have found that for θ = π/2 and ac = 0,
this separation is approximately given by the simple equation

λ̃d2 − λ̃d1 = (̃λ2 − λ̃1) exp(−z1/ld) (34)

where ld = 1/|n1| and n1 = n1(̃λd1) = n1(̃λd2). The degree of validity of equation (34),
shown in figure 6 does not depend greatly on the material parameters ε1, ε2, µ1, µ2.

Finally, we observe that the equation giving the defect frequency for two twist defects
with opposite rotations is

cot2 θ = r2
1 − exp(−z1/(ld))

(
r2

3 exp(−z1/ld) − 2 Im
(
r2

5 exp(in2z1)
))

. (35)

4.3. Finite samples

We discuss here the scattering properties and the polarization of the internal field in finite
samples with two twist defects which divide the whole sample in the regions, a for
(−za < z < 0), b for (0 < z < z1) , and c for (z1 < z < zc), where za and zc define the
sample boundaries. In order to explain the behaviours of the scattering curves is worthwhile
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Figure 5. (1, 1) Transmittance curves versus the reduced wavelength λ̃/̃λm for z1 = mld where ld
is the attenuation length of the eigenwaves 1± and m = 1, 2, 3, 4, 5, 6. The other parameters are
the same as in figure 3. Notice the scale change for the x-axis in the lower curves.
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Figure 6. A comparison between the exact (y1) and approximate (y2) values of the peak separation
versus the normalized distance z1/ld : y1 = (̃λd2 − λ̃d1)/(̃λ2 − λ̃1) (stars); y2 = exp(−z1/ld) (full
line). The parameters are the same as in figure 3. In the limit z1 = 0 the peaks are shifted at the
band edges, that is λ̃d1 = λ̃1 and λ̃d2 = λ̃2, since y1 = 1.

to remark that an external wave incident from the left generates the internal eigenwaves 1+, 2+

at the first boundary plane (z = −za). When the impedance mismatch between the external
medium and the helical structure is small, circularly polarized waves generate practically only
one of such eigenwaves. In the right-handed helices considered here, right (rcp) and left (lcp)
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Figure 7. Transmittance curves near the first defect frequency for right circularly polarized waves
(rcp, upper curves) and left circularly polarized waves (lcp, lower curves) in a thick sample (left
side curves) and a thin one (right side curves). The material parameters and the twist angle are
the same as in figure 3. The sample boundaries are at z = −za and z = z1 + za, the twist defects
at z = 0 and z = z1, where z1 = 2ld in both samples, za is 6ld and 2ld in the thick and the thin
samples, respectively. The properties of the curves (thickness and height of peaks and holes) is
discussed in the text.

polarizations generate the eigenwaves 1+ and 2+, respectively. In contrast, a wave incident on
a defect plane generates all the eigenwaves, two reflected and two transmitted, because the
mismatch is very large.

In figure 7, we have plotted the transmittance curves of two samples with the same material
parameters and the same defect frequencies but with a different thickness, in order to exhibit
the main role of sample size. The most evident difference concerns the width of peaks and
holes. In the thick sample (left curves, za = zc = 6ld, z1 = 2ld where ld is the attenuation
length of the eigenwaves 1±) the width is practically the same as for the curves giving the
square amplitudes of the element of the scattering matrix S

(
z+

1 , 0−)
. In fact when both za

and zc are much larger than ld only the nonlocalized component reaches the sample boundary.
Since in lossless media the amplitude of such component is independent of z, the energy loss,
the decay time, and the line widths remain unchanged. The decay time begins to decrease
(and the line width to increase) when at least one of the parameters za, zc is such that the
amplitude of the localized components at the sample boundary is no more negligibly small.
The upper curves show that a right circularly polarized wave, which generates the eigenwave
1+, is transmitted only near its defect frequency. In fact within any one of the three regions, the
eigenwave 1+ drastically reduces its intensity, but at the defect frequency it is greatly enhanced
when it reaches a defect plane. This mechanism implies that a sample with any thickness can
transmit the attenuated eigenwave 1+ if we insert many twist defects in the sample at a distance
comparable with ld. The lower curves show that the twist defects no longer reflect totally the
eigenwaves 2+ for thin samples.

The main properties of the internal electromagnetic field generated by an lcp wave with
unit power flux in the same thick sample as in figure 7 are shown in figure 8. The polarization
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Figure 8. Properties of the internal field generated by a left circularly polarized wave with unit
energy density incident from the left and the thick sample considered in figure 7. The curves refer
to the central part of the sample, which includes the twist defects (at z = 0 and z = z1 = 2ld). The
upper curves show that the relative energy density is maximum at the defect planes, as expected.
The lower curves define the polarization properties of the two defect modes, whose reduced
wavelengths λ̃ are λ̃d1 = 0.9937̃λm (full lines) and λ̃d2 = 1.0066̃λm (dotted lines). The meaning
of the Stokes parameters s1 and s2 is defined in the text.

properties of the field are defined by the Stokes parameters s1, s2, s3, that is, by a point on
the Poincaré sphere. The curves giving s3 are omitted since this parameter is very small in
the whole z-interval. This means that the polarization of the internal field is nearly linear
everywhere. The angle between the electric field e and the axis x1 is nearly equal to 45◦

around the first twist defect (where s2 is nearly equal to +1 and s2 is small), and nearly equal to
−45◦ around the other twist defect (s2 ≈ −1, s1 ≈ 0). The vectors e rotate by almost ±90◦ in
the region between the defect planes. At the midpoint of this region they are nearly parallel to
x1 (s1 ≈ 1) or to x2 (s1 ≈ −1). The undulation is due to the presence of the small components
2±, which interfere with the dominant components 1±. The absence of this undulation in the
region c (z > z1 = 2ld) means that the eigenwaves 2± are practically absent in this region,
confirming the fact that the thick sample reflects totally the incident lcd wave (the relative
energy density at the second sample boundary is nearly equal to 0.005).

5. Multiplets

The equation giving the transfer matrix for n0 identical and equidistant twist defects at z = nz1,
where n = 0, 1, 2, . . . , n0 − 1, can be written as

U = U
(
(n0 − 1)z+

1 , 0−) = U1[(exp(iNz1))U1]n0−1. (36)
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Figure 9. Transmittance of the layer including n0 = 3 identical twist defects versus the reduced
wavelength λ̃/̃λm for the eigenwave 1 (upper curve) and 2 (lower curve) θ = π/2, z1 = 3ld, and
the values of the other parameters are the same as figure 3. Here transmittance does not refer to
the ratio between the energy flux of the transmitted and incident waves, which for the standing
eigenwaves 1 is zero, but to their energy densities.

For n0 = 2, equation (36) becomes identical to equation (30). The square amplitudes of the
elements (1, 1) and (2, 2) of the scattering matrix are plotted in figure 9 for N = 3, θ = π/2
and z1 = 3ld. The figure shows three different twist defects at the wavelengths λ̃d1, λ̃d2, λ̃d3,
where λ̃d2 is nearly equal to the average value of λ̃d1, λ̃d3. At the defect frequencies, the
structure totally reflects the eigenwave 2. This allows us to define the defect frequencies
by setting to zero the element (1, 1) of the matrix U−1. In the particular case ac = 0 the
twist defects contain only the localized eigenwaves 1± for any value of n0 and the defect
frequencies can be found using 2 × 2 matrices (see the appendix). For three identical and
equidistant defects, this gives

(cot θ − r1)
3

r2
3

= (cot θ − r1)(exp(−2z1/ld) + exp(−4z1/ld)

+ exp(−6z1/ld)) + 2r1 exp(−6z1/ld). (37)

For any value of λ̃ within the band gap, equation (37) gives three different values for the twist
angle θ in the interval [0, π ]. This fact justifies that for any given θ it admits three different
values for λ̃ within the band gap.

Transmittance curves for n0 = 5 are depicted in figure 10. They have shown that the
different twist defects have different heights and widths even for the particularly symmetric
case θ = π/2.

6. Comments and concluding remarks

In section 2 we have defined (1) the Hilbert space of the state vectors for the electromagnetic
field generated within the sample by the incident waves, (2) the four eigenwaves of the periodic
structure without defects and (3) a scalar product having a simple physical meaning. With



Multiplet structure of the defect modes in 1D helical photonic crystals 8837

0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004
102

104

106

(1
,1

)
tr

an
sm

itt
an

ce

0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004
0

0.2

0.4

0.6

0.8

1

λ/λ

(2
,2

)
tr

an
sm

itt
an

ce

m

Figure 10. The same as figure 9 but for n0 = 5 identical twist defects. For the sake of clarity, we
used a semi-logarithmic scale on the top panel.

these definitions, it becomes quite easy to compute the scattering properties of samples with
any number of twist defects. Many interesting properties have been found numerically, but a
purely numerical approach is of little help for their understanding. Hence our effort to find
analytic expressions and equations, and more generally to get a deeper insight into the physics
of the problem. We add here some comments about further developments and applications
and to provide a better explanation of some particularly interesting properties.

6.1. Periodic helical structures and homogeneous chiral media

In the frame x1, x2, x3 rotating solidly with the tensors ε and µ, the propagation equation of
the electromagnetic field within the helical structure becomes the same as in an homogeneous
medium. Since the considered defects are spaceless, reducing to discontinuity planes within the
medium, our problem becomes identical to the well-known problem of the wave propagation in
a set of homogeneous layers separated by discontinuity planes. The ‘equivalent’ homogeneous
medium is anisotropic and chiral. The chiral parameter here is the helix pitch p, which is
related to the quantity λ̃ = λ/p and plays exactly the same role as the chiral parameter k in an
isotropic medium [19].

Therefore, the equations which define the eigenvalues and eigenvectors of H are valid also
for the equivalent homogeneous medium by simply substituting p with k. The most surprising
consequence of this analogy is due to the fact that a band gap may appear also in homogeneous
media. Such important point deserves some comments. The equivalent homogeneous medium
is isotropic for its chiral properties, since only one chiral parameter appears, and anisotropic
for the other properties. This is quite unusual. If we consider a medium which is isotropic
for all its properties the band gap disappears since its edges λ1 = k

√
ε1µ1 and λ2 = k

√
ε2µ2

coincide. However, the most important point is the following one. In helical media p can
have any value, whereas in most chiral media the actual value of k is such that λ1 and λ2 are
very small (of the order of the molecular size). For such λ-values the analogy could fail. In
fact the continuum models used in the macroscopic approaches, which neglect the molecular
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structure of matter, are valid only for λ-values greater the molecular size. In conclusion, the
possibility that the theory developed here could be useful also for homogeneous media is not
excluded but it deserves further research.

Owing to the analogy between homogeneous media and the periodic structures considered
here, it is not surprising that it has been possible to find exact analytic expressions for such
structures, which play therefore an unique role among periodic media (nothing similar is
possible for any other periodic structure with defects). This is a good reason for their study, in
our opinion. The main difference between the equations given here and the equations found
in the literature for homogeneous media is due to the fact that we are interested to solutions
within the frequency gap, which to our knowledge are not yet been considered in the optics
of homogeneous media. From the point of view of applications, the main difference between
the helical structures and the other 1D crystals concerns their polarization properties. In fact
the presence of a chirality parameter makes the polarization of the eigenwaves nearly circular,
whereas in most anisotropic media it is linear or nearly linear.

We finally recall that the helical medium appears homogeneous and admits plane-wave
solutions only in the rotating frame. In the laboratory frame, the solutions are obviously Bloch
waves.

6.2. Scattering properties and defect frequency

In section 3.3, we have defined the defect wavelength λ̃d of a sample with only one twist defect
by setting to zero the element (2, 2) of the scattering matrix. Such definition deserves some
comments.

For the definition of λ̃d it is reasonable to consider the scattering properties of the sample,
because the curves fij (̃λ) = |Sij (̃λ)|2, where Sij are the elements of the scattering matrix,
display enhanced maxima or minima only in the presence of defects. The definition of λ̃d

becomes obvious if and only if all the maxima and minima occur at the same λ̃-value. A
numerical analysis shows that this not the case in general, but it is not easy to have an intuitive
feeling of the origin of the difference between the position of two different peaks. In fact,
to define the matrix S we must first compute the transfer matrix U, whose elements depend
very smoothly on λ̃ even in the presence of defects. In section 3.3, we have set to zero the
element (1, 1) of the inverse transfer matrix, which is given by expression (28). In this case,
the quantities fij giving the transmittances of the defect plane are

f11 = (
cos2 θ + r2

2 sin2 θ
)/|r5|4, f12 = f21 = 1/|r5|2, f22 = 0. (38)

The quantity r5 defined by equation (26), contains the factor ac. Thus, the quantities f11,
f12, f21 diverge when ac goes to zero. In this case the defect frequency is defined without any
ambiguity because the functions fij (̃λ) become proportional to the Dirac function δ(̃λ−λ̃d). In
the general case ac �= 0 the peaks and holes of the functions fij (̃λ) have a finite thickness and
their maxima and minima occur at different λ̃-values, but the differences between such values
is small when the modulus of ac is small. For typical values of the anisotropy parameters the
differences are so small that we can choose any one of these values as a possible definition
of λ̃d. We have chosen the minimum of f22 because it is defined by a simpler equation. In
conclusion, the defect frequency can be defined exactly, without any ambiguity, only when
ac = 0 and in actual samples it is quite well defined because ac is a small parameter.

Here, we have considered the scattering matrix of the defect plane for the internal
eigenwaves. The interest of our analysis may appear purely academic, because in experiments
only finite samples and external waves are considered. Obviously the maxima or minima of
such curves occurs again at a well-defined frequency only when ac = 0. This fact confirms
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the main role of the parameter ac for the optical properties of samples with twist defects. We
recall that in nonmagnetic media the width of the frequency gap is zero when ac = 0. Thus, it
has been possible to use ac as a free parameter, in order to better understand its role, because
the considered medium is both dielectric and magnetic.
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Appendix. Material parameters and scaling laws

The parameters defining the helical structure without defects are ε1, ε2, µ1, µ2, and the helix
pitch p. The last quantity does not appear in our equations because we have used the reduced
wavelength λ̃ = λ/p. This fact implies that the properties discussed in the paper do not depend
separately on λ and p but only on the ratio λ/p: a change of p simply rescales the wavelengths
defining the width of the band gap and the defect frequencies. It seems interesting to search
for other possible scaling laws. To this aim we have rewritten all the found equations using
the new sets of parameters:

λ̃1 = √
ε1µ1, λ̃2 = √

ε2µ2, Z1 =
√

µ1/ε1, Z2 =
√

µ2/ε2, (A.1)

and

λ̃m = (̃λ1 + λ̃2)/2, λ̃a = (̃λ2 − λ̃1)/2,
(A.2)

Zm = (Z1 + Z2) /2, Za = (Z2 − Z1) /2;
instead of the material parameters ε1, ε2, µ1, µ2. The found results can be summarized as
follows.

(i) By setting x = λ̃/̃λm, the equation defining the defect modes and their properties
depend only on the ratios

xa = λ̃a/̃λm, za = Za/Zm. (A.3)

Only two of the four material parameters are independent, a fact that gives other two scaling
laws.

The parameter xa defines the relative width of the band gap, the parameter za defines the
width of the defects lines and plays therefore the same role as the anisotropy parameter ac,
which can be written as

ac = 2
1 − x2

a

1 − z2
a

λ̃2
mza. (A.4)

(ii) The parameters Z1 and Z2 play the role of impedances for the eigenwaves 1±. In fact
at the band edge λ̃ = λ̃1, the ratio |e1|/|h1| is equal to Z1 = √

µ1/ε1 since both vectors e1

and h1 are parallel to x1. The same occurs at the other band edge, with the suffix 2 instead of
1. When ac = za = 0, Z1 = Z2 and |e1|/|h1| = |e2|/|h2|, a fact which helps us to understand
why for ac = 0, the vectors e and h rotate rigidly within the band gap, by keeping parallel to
each other.

(iii) When ac = za = 0, the quantity r5 appearing in the matrices RS and U,
equations (24) and (25), respectively, is identically zero. If we write the eigenwaves 1±, 2± in
the order 1+, 1−, 2+, 2− the transfer matrix U of the defect plane becomes

U =
(

U11 0
0 U22

)
, (A.5)
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where

U11 =
(

1 0
0 1

)
cos θ −

(−r1 −r3

r3 r1

)
sin θ,

(A.6)

U22 =
(

1 0
0 1

)
cos θ − i

(
r2 r4

−r4 −r2

)
sin θ.

The eigenwaves 1± and 2± become decoupled and the defect modes combine only the localized
components 1±. Thus, the defect mode can be defined using the 2 × 2 matrices U11 instead of
the 4 × 4 matrix U, a fact which greatly simplifies the computations.
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